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Abstract— Peg-in-Tube assembly stands ahead of a more
common benchmark task for industrial assembly, i.e., ‘peg-
in-hole’. The robot can easily be deceived to detect the actual
hole while performing a ‘peg-in-tube’ task as the tube has a
surrounding pocket that cannot support the peg. The paper
presents a thorough geometrical analysis of the ‘peg-in-tube’
assembly process, and proposes a novel algorithm based on
depth measurements of peg center to perform ‘peg-in-tube’
task. The results are demonstrated on a KUKA KR5 Arc
industrial robot with a chamferless cylindrical peg and a tube
having clearance of 0.10 mm.

I. INTRODUCTION

Peg-in-tube forms the superset of industrial assembly task
where the possibility of finding the target hole is obscured.
This is because there exists a surrounding pocket which may
be mistaken with the actual hole where the part is to be
inserted. The existing well researched peg-in-hole task forms
a special case of peg-in-tube task where the outer radius of
the tube is infinity. Many such cases exist in the industry
which may be pronounced as peg-in-tube task. For example,
inserting a piston into the cylinder liner, inserting a plunger
into a cylindrical fuel pump barrel, putting cylindrical fuel
pellets into a tube in a nuclear power plant, fitting a shaft
into a circular bush, etc. Most of the existing peg-in-hole
strategies are inappropriate to search the hole location on
a tube in its current form. Some of them can be modified
beneficially to be used for peg-in-tube task as well. There
are primarily two different approaches to the hole search
problem. The first one uses the robot’s end-effector position,
whereas the second one uses a force/torque sensor fitted at
the robot’s end-effector.
A 6-axis force/torque sensor data was used to precisely
estimate the shape and location of the peg with respect to
the hole [1]. Relying entirely on force sensor data is not
worthwhile in a typical industrial environment where the
force sensor data is proven to have a very high noise [2].
These noise may be attributed to the mechanical vibration
of the work floor, electrical noise, electromagnetic radiations,
etc. For any two surfaces in contact and in relative motion,
the measured contact force will depend largely on their
surface finish and the force controller gains. Moreover, if the
surface stiffness is high, a small relative displacement due to
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vibration will cause a high value of noise in the sensed force.
Same applies to any force/moment based method for hole
detection, which will be more evident through an experiment
described later in this paper as well.
A blind search strategy for localization by generating a depth
map of the tilted peg center from the hole surface, and
applying a particle filter to locate the hole was proposed
by [3]. This method has the potential to be used for ‘peg-
in-tube’ case as well, but the depth map is required to be
regenerated if the dimensions of the peg or the hole changes.
Generating a new map is time consuming if it is prepared
online using the robot holding the peg, and complicated if
it is generated offline using simulations based on analytical
methods. Moreover, an analytical depth map may not be re-
alized for actual localization if the environmental constraints
like, system compliance, surface finish, etc., are not taken
into account for creating the depth map. Due to the presence
of pockets around the actual hole, finding a unique hole
location on a tube by plunging the peg for a lesser number of
times is ruled out, as this will give rise to multiple solutions.
Moreover, plunging the peg for a larger number of times
will increase the insertion time. A strategy for high-precision
assembly in a semi-structured environment based on vision
and force control was demonstrated by [4]. Detecting the
pellet pose using machine vision suffers from calibration
errors, blurred view for objects that are close by, improper
illumination, noise due to the background environment, etc.
Also, the time required to assemble with spiral search used
by [4] depends on the initial offset of the peg from the peg
center. A set of environment-independent search strategies
was proposed by [5], where a neural-network based strategy
based on moments and descent of the peg into the hole
was generalized for tilted peg. Such optimization techniques
are suited well for offline simulations but it may prove
to be non-realistic for a real time insertion. Moreover, the
hybrid force/position control as suggested by [5] cannot be
applied to a position controlled industrial robot. A high speed
assembly of peg and chamfered holes using learning was
demonstrated by [6] using joint torque controlled robots.
Such robots, however are not used in the industry where the
robots are required to perform precision tasks with heavy
loads.
Therefore, a blind search technique is needed that can
efficiently eliminate the possibility of peg being dropped
outside the tube, provided it is brought sufficiently near to
the hole using existing automation, to say, using a vision
system.
This paper proposes a hole search method which measures
the depth of the tilted peg center from the top surface of the



tube while the peg rotates about the axis perpendicular to the
tube’s top surface by one full revolution. The profile of this
depth was used to find the direction of the hole.
Note here that the positioning repeatability of an industrial
robot is typically in the range of 100 µm. For example, the
KUKA KR5 Arc robot used in this work has ±0.10 mm,
i.e. 100 µm positioning repeatability, whereas most of the
assembly tolerance is in the order of few tens of microns
[1]. Position and orientation error can cause jamming and
wedging during insertion. An active force control with pas-
sive joint compliance based on current limiting, as proposed
by the authors in [7], is expected to solve this problem by
accommodating any minute alignment error during insertion.
However, the current work assumes the peg is aligned
with the tube using any suitable method like [8]. This is
demonstrated with the current experimental setup used for
the validation of the proposed peg-in-tube algorithm. To sim-
plify the problems presented above, the paper uncovers the
geometrical aspects and the practical considerations that are
required to be understood before dealing with chamferless
cylindrical peg-in-tube task. Secondly, the paper proposes a
novel algorithm to tackle ‘peg-in-tube’ task. Experimental
results presented here shows the viability of the proposed
algorithm.
The remainder of this paper is organized as follows: Section
II lays down the geometrical foundations required to be
developed to analyze the details of the proposed peg-in-tube
task. Section III discusses the proposed algorithm for the
‘peg-in-tube’ task. Section IV investigates the effectiveness
of the proposed algorithm through experimental results.
Finally, Section V gives the conclusions.

II. GEOMETRICAL ANALYSIS OF PEG-IN-TUBE CONTACT

The proposed search procedure involves rotating a tilted
peg about the axis which is perpendicular to the tube’s top
surface while the peg maintains a constant contact with the
tube. Thus, the peg moves in a cone with a half-angle of the
vertex equals to the amount of the tilt angle θ, as shown in
Fig. 1.
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Fig. 1: A tilted peg in contact with the tube.

This section will investigate the geometrical aspects of

such contact cases and will extract the required peg center
depth cz from the tube’s top surface, as shown in Fig. 1.
This depth information was utilized later to find the hole
direction. A tilted peg when lies outside the hole with an
offset (cx, cy, cz), can make contact with the tube in four
different states. They are shown in Fig. 2(a – d). There are
two other states in which the peg can make contact with
the hole. Firstly, when the curved surface of the peg comes
in contact with the tube’s inner rim, as shown in Fig. 2(e),
and secondly, when the peg’s bottom cap comes in contact
with the tube’s inner curved surface, as shown in Fig. 2(f).
Latter two cases do not arise during rotation of the tilted peg,
which was done during search procedure adapted here in this
paper. Hence it is not analyzed anywhere. It may be noticed
that the peg-in-tube process has two additional contact cases
compared to a peg-in-hole process [9]. They are 1) when
the outer rim of the tube and rim of the peg’s bottom cap
comes in contact, as shown in Fig. 2(c); 2) when the peg’s
bottom cap face comes in contact with the tube’s outer edge
as shown in Fig. 2(d).

(a) Inside rim-rim
contact

(b) Peg on the tube’s
top face

(c) Outside rim-rim
contact

(d) Bottom cap of
the peg on the tube

(e) Inside rim-body
contact

(f) Inside cap-body
contact

Fig. 2: States of contact for Peg-in-Tube

A. Parametric modeling of the peg and tube

In this section, we define the peg and the tube surfaces,
and their edges before we proceed to establish the conditions
of peg lying inside, outside or on the tube. The bottom
of the peg was defined by a parametric equation for a 3-
Dimensional circle. This is given by

p = c+ ur cosβ + vr sinβ (1)

where u and v are the unit vectors that lie on the peg’s
bottom face and perpendicular to the vector n ≡ u × v, as
shown in Fig. 3. The radius of the peg is r, and c is the
position vector of the peg’s bottom center. The parametric
angle β is measured about n with respect to u. For each
0 ≤ β ≤ 2π, P (x, y) represents the peg’s bottom rim. Any
composite tilt about X and Y axes was obtained by applying



the transformation as

u′ = QxQyu and v′ = QxQyv (2)

where Qx and Qy are the 3×3 rotation matrices about X and
Y axes, respectively. To start with u = [1 0 0] and v = [0 1 0]
were taken, such that n = [0 0 1]. Thereafter, the rotations
were applied so as to obtain the required tilt angle. Now, for
any point P (x, y) having position vector p at the bottom-
end cap of the peg, the condition (p− c) · n = 0 holds true
as the vector (p− c) lies on the plane for which the normal
n = [nx ny nz] which passes through c = [cx cy cz]. This
condition is essentially the vector expression for representing
the bottom-end cap of the peg. This may be written in scalar
form as

nx(x− cx) + nx(y − cy) + nz(z − cz) = 0 (3)

With this any contact with the peg’s bottom surface or the
edge can be geometrically explained. For that, the parametric
equations for the tube hole are given next as

x = R1 cos(ξ) and y = R1 sin(ξ) (4)

where 0 ≤ ξ ≤ 2π and R1 is the inner radius of the tube, as
shown in Fig. 1. Similarly, the outer edge of the tube with
radius is R2.
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Fig. 3: A 3-Dimensional circle.

B. The rotating tilted peg

Let us assume that the peg has a small tilt angle of θ and
rotates about the vertical axis by an angle α, as shown in
Fig. 1. Then the tilt angle about global X and Y axes given
by ψ and ϕ, respectively, may be expressed as

ψ = arcsin(sinα sin θ) and ϕ = arcsin(cosα sin θ) (5)

where 0 ≤ α ≤ 2π. The projection of the peg’s bottom cap
forms a rotated ellipse and it constitutes an important aspect
to identify the point of contact. The modified equation of the
standard ellipse E to express the projected base of the peg
may be expressed as

E =
(x̃)2

a2
+

(ỹ)2

b2
− 1 (6)

where a = r and b = r cos θ are the major and minor axes,
respectively. Moreover, x̃ and ỹ are given by

[
x̃
ỹ

]
=

[
cosα sinα
−sinα cosα

] [
x− cx
y − cy

]
(7)

The state of the peg may now be completely defined by θ,
α and the offset c = [cx cy cz] from the tube center which
was taken as origin O here. The lowermost point of the peg
Pl = (xl, yl, zl) was given by the 3D circle equation (1),
at β = α. The location of Pl will enable us to determine
the possible point of contact. The point of intersection of
the projected peg’s base and the tube Pi = (xi, yi, 0) was
obtained by solving E of (4) and (6). The potential point of
contact is the Pi which is nearest to Pl. The possible location
of Pi for a sample state of the peg is shown in Fig. 3.

C. Cases of peg and tube in contact

The cases discussed here completely defines the rotation
of the tilted peg about a vertical axis passing through the
peg’s bottom center, while the peg also maintains a constant
contact with the tube during the rotation. The state of the
peg for each case was examined individually and the depth
information was extracted accordingly. They are explained
next.

1) Peg lies inside the tube: The projection of lowermost
point of the peg Pl lies within the tube’s inner circle, i.e., the
hole, as shown in Fig. 2(a). This can be assured by checking,
if the condition x2 + y2 − R2

1 < 0 is true for the point Pl.
The point of intersection of the projected ellipse E and tube’s
inner rim Pi that corresponds to the point of contact (the one
which is nearer to Pl) satisfies the equation of the plane (3).
Thus the depth cz may be calculated from (3) as

cz =
1

nz
[nx(xi − cx) + ny(yi − cy)] (8)

2) Peg lies on the tube: The lowermost point lies between
the inner and outer circular rims of the tube. Thus, Pl makes
x2 + y2 −R2

1 ≥ 0 and x2 + y2 −R2
2 ≤ 0, and the depth cz

from Fig. 3 may be given by

cz = r sin θ (9)

This is shown in Fig. 2(b).
3) Peg lies outside the tube: The lowermost point lies

outside the outer circular rim of the tube. Thus, Pl makes
x2 + y2 − R2

2 > 0. In this case the peg may have a rim-
rim contact case, as shown in Fig. 2(c) or rim-face contact
case, as shown in Fig. 2(d). In the case when the peg’s cap
comes in contact with the outer tube rim, the line joining the
center of the tube O to the point of contact Pt = (xt, yt, 0)
becomes parallel to the projected normal of the cap’s plane.
This gives rise to the simultaneous conditions

xt

yt
=

nx

ny
and x2

t + y2t = R2
2 (10)



Solving which, we get the point Pt = (xt, yt, 0) as

xt = sign(nx)

√
R2

2

1 + (ny/nx)2

yt = sign(ny)
ny

nx
xt

(11)

For, nx = 0, xt = 0. Hence, the two sub-cases may be
further investigated as

• Rim-rim contact: Pt lies outside the ellipse E and
makes E > 0, as shown in Fig. 2(c). Thus, Pi i.e.,
the point of intersection of E and tube’s outer circle,
lies on the peg’s bottom rim and it satisfies the cap’s
plane equation (3). Hence, from (3)

cz =
1

nz
[nx(xi − cx) + ny(yi − cy)] (12)

• Rim-face contact: Pt lies inside the ellipse E, i.e., the
projected bottom cap of the peg, as shown in Fig. 2(d).
Thus for Pt lying on the peg’s cap plane, Pt makes
E < 0. On substituting Pt = [xt yt 0] in (3) we get

cz =
1

nz
[nx(xt − cx) + ny(yt − cy)] (13)

4) Curved surface contact: With relatively large offset
and a small tilt angle, the curved surface contact is kept out
and hence its analysis is not included here. However, for the
sake of completeness of the peg model it is briefly being
included here. Any point q on the peg’s curved surface may
be assumed to be an equidistant point from the cylinder’s
axis. This may be represented as a point-line distance in 3D
[10] as

r =
|n× (c− q)|

|n| (14)

With the scalar equation (14) and conditions for the end caps
boundaries, i.e., the plane equations (3), one can detect any
point falling inside the peg surfaces.

III. THE PROPOSED ALGORITHM

The algorithm makes use of the fact that, when a tilted
peg attains a two point contact during rotation, the projection
of the peg axis represents the direction of the hole and the
peg center reaches the minimum depth cz . Thus, the method
of finding the hole direction involves rotating the tilted peg
about the axis which is perpendicular to the tube’s top plane
and passes through the peg center. The peg rotates by one
complete revolution and finally finds the angle α for which
the peg lowers to the minimum depth cz measured along the
axis of rotation. This corresponds to the hole direction. The
contact with the tube was maintained using the force control
algorithm as discussed in [7]. Such a hole search process
with a tube will have two minima in the depth profile.
The proposed algorithm eliminates the minimum value
which corresponds to the direction that will lead to peg
being moved in the opposite direction to that of the actual
hole. Algorithm III.1 demonstrates how an analytical depth
profile can be generated using the conditions discussed in
section II-C. This was used later in section IV as shown in

Fig. 5, which shows the analytical depth profile for a peg
radius of r = 9.42mm, tilt angle of θ = 7.5o, tube radius
R1 = 9.7mm and R2 = 12.65mm.

Algorithm III.1: GENERATEDEPTHPROFILE(θ, c)

comment: Generate the depth profile

r,R1, R2 ← by definition
for α ← 0 to 360

do





ψ,ϕ ← From (5)
Qx ← function of(ψ)
Qy ← function of(ϕ)
u ← QxQyu, v ← QxQyv
n ← u× v
Pl ← function of(α) From (1)
if x2

l + y2l −R2
1 < 0

then





Solve (4) and (6) for Pi

Pi ← Pi nearest to Pl

cz ← from (8)

else if
{
(x2

l + y2l −R2
1 > 0) and

(x2
l + y2l −R2

2 < 0)
then

{
cz ← r sin(θ) from (9)

else if x2
l + y2l −R2

2 > 0

then





Pt ← From (11)
if E < 0 for Pt. From (6)

then
{
cz ← from (13)

else





Solve (4) with R2

and (6) for Pi

Pi ← Pi nearest to Pl

cz ← from (12)
save α, cz

The two minima which can be observed in Fig. 5 lies
opposite to each other, i.e., 180o apart at 90o and 270o.
The inner tube hole will form a narrow depression in the
profile such that the lowest point is non-differentiable. The
profile with the wider opening and continuous at minima
is formed when the flat bottom part of the peg rolls on the
outer periphery of the tube. As the offset of the peg increases
from the center of the hole, the depth realized for inner tilt
which directs to the hole direction decreases and the depth
for outer tilt which directs opposite to the direction of the
hole increases. Hole direction can be safely detected just by
checking the maximum depth location, until the offset for
which the depth due to inner tilt is greater than for the outer
tilt. This is derived next.

A. Maximum offset for safe hole detection

Figure 4(a) shows a two point contact case when the depth
cz is minimum for the inner tilt. Figure 4(b) on the other
hand shows the outer rim contact where the depth cz is again
minimum. This is in the case of outer tilt. Let the offset be
cy measured along Y -axis, i.e., for cx = 0, where the depth
due to inner tilt is same as that of the outer tilt with the peg



having tilt angle θ. The conditions for both the cases are as
follows:

a) Inner tilt
{
nx = 0, ny = − sin θ, nz = cos θ
Contact point: xi, yi

b) Outer tilt
{
nx = 0, ny = sin θ, nz = cos θ
Contact point: xt = 0, yt = R2, zt = 0.

(15)
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(a) Two point rim-rim contact during inner tilt.
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(b) Single point rim-face contact during outer tilt.

Fig. 4: Instances of peg-in-tube contacts having same depth.

Substituting the cases (15a) and (15b) in (8) and (13)
respectively, we get

a) cz =
1

cos θ
[sin θ(R2 − cy)]

b) cz =
1

cos θ
[− sin θ(yi − cy)]

(16)

Using trigonometrical relations in Fig. 4(a), we get

r sin γ =
cz
sin θ

and cosγ =
xi

r
(17)

The point of contact (xi, yi) can now be obtained as

From (17), xi = r

√
1− c2z

r2 sin2 θ

and from (16b), yi = cy −
cz
sin θ

cos θ

(18)

Substituting (xi, yi) from (18) in the condition x2
i+y2i = R2

1,
we get

r2 + c2y − c2z −
2cycz
tanθ

= R2
1 (19)

Substituting cz from (16a), a quadratic equation in cy was
obtained as

(3−tan2 θ)c2y−2R2(1−tan2 θ)cy+(r2−R2
2 tan

2 θ−R2
1) = 0

(20)

Solving (20) for a realistic case with positive solution, cy
was obtained. This offset is expected to assist one to choose
a suitable precision of the sensing system to approach the
tube, i.e., a vision system, a laser range sensor, or a 3D-
point cloud scanner etc.

B. Detecting hole direction and insertion

Once the rotation was completed for 0 ≤ α ≤ 2π,
the value of α corresponding to the least depth αmin was
recorded. The peg was then made vertical, i.e., with tilt angle
θ = 0, and a constant desired contact force was maintained.
The direction of the hole was obtained as

∆x = k1 cosαmin and ∆y = k1 sinαmin (21)

Or, by using (5) as

∆x = k2 sinψmin and ∆y = k2 sinϕmin (22)

where k1 and k2 are the constants of proportionality. Now,
the peg was advanced with continuous small displacements
of ∆x and ∆y along X and Y , respectively, until it senses a
reduced reaction force due to the presence of the hole. The
robot was now stopped and the peg was inserted gradually
into the hole. Note that the values of k1 or k2 directly
affect the advancing velocity towards the hole. Their value
depend on the clearance between the tube and the hole. They
were kept small in our experiments due to the possibility of
skipping of the peg over the hole.

C. Algorithm for Implementation

In order to use the proposed algorithm the steps given in
Algorithm III.2 was used with a KUKA KR5 Arc robot. It
was assumed that the peg is to be brought near to the top of
the tube using any suitable system, for example, a vision
system. The robot provides the end-effector coordinates
(X,Y, Z) in its base frame, where Z is vertically up and
parallel to the tube axis. The peg was tilted, and lowered
using a force control mode, i.e., if the peg senses any
contact it would maintain the desired force Fdesired. The
small decrement in the robot’s end-effector coordinate Z,
i.e., ∆z, should be kept very small as establishing a contact
at high speed will give rise to an undesired thrust that can
damage the surface of tube or peg. While the peg is rotated
for 0 ≤ α ≤ 360o the algorithm updates the minimum Z
value, i.e., Zmin with the current Z if it is lower than the
existing Zmin. It also sets the variable αmin to the value of
α corresponding to Zmin. Once the rotation is complete the
peg was made vertical by setting the tilt angle θ to 0. The
peg was then moved towards the hole using (22) till it finds
the hole, where the peg senses a reduced reaction force Fz
than the desired force, or the peg gets into the hole by a
small distance d. The peg was then lowered gradually into
the hole.



Algorithm III.2: PEGINTUBE(θ, c)

comment: Algorithm for implementation

START: Peg over the tube
Zmin ← Z
θ ← tilt angle
while Fz ≤ Fdesired

do Z ← Z −∆z
for α ← 0 to 360o

do





ψ, ϕ ← From (5)
if Z < Zmin

then
{
Zmin ← Z
αmin ← α

θ ← 0
∆x, ∆y ← From (22)
while Fz > Fdesired OR Z > Zmin− d

do
{
X ← X +∆x
Y ← Y +∆y

END: Insert the peg

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A KUKA KR5 Arc industrial robot was used to validate
the proposed peg-in-tube algorithm. The parameters for the
tube and for the peg were same as given in section III. A
monocular camera system was used to bring the peg directly
over the tube. However, its discussion is excluded as it will
divert the focus of this paper. The end-effector was mounted
with a six component Force/Torque sensor manufactured by
SCHUNK of type Delta, Sl-165-15. In order to measure the
vertical depth during the hole search procedure as discussed
in section III, we relied on the in-built forward kinematics
of KUKA KR5 Arc robot.
Figure. 5 shows the depth profiles obtained experimentally
and analytically peg radius of r = 9.42mm, tilt angle of
θ = 7.5o, tube radii R1 = 9.7mm and R2 = 12.65mm,
and an offset of c = (−7.53, − 7.2, 0)mm. A close
match of the depth profiles validates the proposed Algorithm
III.1. The difference in the depth profiles is mainly due to
experimental procedure. Some of them are discussed in the
following subsections.

A. Force/Torque Sensor and DAQ

The force/torque sensor used for the experiment was
of high bandwidth with 495N along vertical Z-direction
and a low sensor resolution of 1/16N using a 16-bit Data
Acquisition (DAQ) system. The DAQ was used to pass the
analog voltages of 6 strain gauges to the controller. These
data were filtered using a real-time low pass fourth-order
Butterworth filter with cut-off frequency of 40Hz. The
sampling frequency was 83.33Hz. The force data was
generated by multiplying the 6-dimensional vector of
voltages with the 6 × 6 sensor calibration matrix. The
resulting force data had a typical noise of ±0.15N .
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Fig. 5: Theoretical vs. analytical depths.

B. Effect of peg size and clearance

The bigger peg will definitely accommodate more
placement error, i.e., the offset, in order to have a safe hole
direction detection as per (20). However, in order to study
the effect of peg sizes, two different pegs were analyzed.
Figure 6 shows the analytical depth profile for two different
pegs of radii 9.42mm and 24.0mm when the peg center
lies on the tube rim, i.e., with offset equal to the mean tube
radius cx = (R1+R2)/2 and cy = 0. The peg and tube had
a radial clearance of 0.28mm for both the cases.
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Fig. 6: Depth profiles for peg radii 9.42mm and 28.0mm.

It was observed that the differences in depths of two
minimums are 0.526mm and 1.516mm, respectively, for
smaller and bigger pegs. These differences are required
to be distinguished clearly using depth observations made
by robot’s sensory system to estimate the correct hole
direction. It becomes even more difficult when the depth
data are accompanied with the noise as well. This limits the
minimum size of the peg which can be handled using the
proposed algorithm with the setup used in this paper. The
authors could successfully insert peg of diameter 18mm
with 95% success rate (tested with 40 pegs) using the
existing setup. For smaller pegs and smaller offset a blind
spiral search [4] may be used instead.
It may be observed in Fig. 6 that an error in depth



measurement by 0.1mm will cause corresponding hole
direction error of 6o and 2o for smaller and the bigger
pegs, respectively. This quantifies the hole direction error
for a particular depth measurement error. If the smaller peg
proceeds with directional error of 6o with offset amounting
to the peg radius, it will reach to 0.984mm away from the
actual hole. In the case of bigger peg, 2o directional error
will lead to 0.977mm hole position error. Thus, a system
with an error of 0.1mm in depth measurement may not
successfully perform peg insertion with a peg and tube
having clearance of 1mm or less.

C. Other sources of error

Apart from force sensing and displacement measurement
errors, this section lists the additional sources of errors
that limit the performance of peg-in-tube process. Following
points may be noted while designing the peg-in-tube assem-
bly systems:

• Passive compliance of the gripper system allows unac-
counted motion of the peg-tip.

• Assuming the tube’s top face perfectly flat is just an
ideal case. Peg and tube axes alignment is also required
which may be done using [8].

• Poor surface finish of the rolling surfaces of peg and
tube creates force/displacement noise.

• Two-finger gripper cannot hold the peg firm enough to
restrict small linear and angular motions of the peg with
respect to the robot’s end-effector during contact.

• Due to inaccurate tool calibration, the peg never makes
pure rolling during search procedure. Any slipping on
the edge will create noise.

• At high speed force control response is poor which
may cause undue contact forces or a loss of contact.
However, with 10% Point-to-Point speed of KUKA
KR5 Arc robot four consecutive pegs were inserted
in 22.5 seconds. This included picking of peg from a
fixed location, bringing the peg directly over the tube,
searching for the hole, and finally inserting the peg, for
each of the peg.

• An industrial floor with high vibration may also lead to
reduced performance.

D. Force vs. Depth based hole detection

In order to have a comparison between the depth based
localization proposed here and the force based localization,
both the depth and the forces/moments were recorded during
the rotation of the peg. The radii of the tube was 23.62mm,
while the inner and outer radii of the tube was 24.5mm
and 28mm, respectively. The tilt angle was set to 7.5o. The
offset was kept so as to have just one minima, i.e., the peg’s
outer rim falls on the tube’s flat face. Figure 7(a) shows
the polar plot for the variation of the depth with respect
to angle α. The variation of vertical force can be seen in
Fig. 7(b). The coherence of force plot with the depth plot
where the minimum depth may be observed is notable. A
sharp rise in force was observed that can be effectively used

for hole direction estimation. This surge force was created
when the peg starts rising up after the two point contact, i.e.,
the minimum depth. The hole direction due to force profile
is consistent to that of the depth profile, i.e, at α = 218.4o.
The force data shows the filtered data in dark, along with
the actual data acquired through the force sensor. With the
unfiltered data it is difficult to figure out the surge due to
the hole in realtime, whereas with filtered data a lag was
observed that might again lead to a wrong hole direction.
One may estimate the lag with proper knowledge of the
filter parameters. It may however be inferred with the data
that is shown in Fig. 7 that the depth data provides a better
localization of the hole direction. A similar surge in moments
was also observed in moments at 214.8o, i.e., at the hole
direction. This is not shown here due to space constraints.
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Fig. 7: Profiles for the peg of radius 23.62mm.

There are various checks which one may devise in order
to encounter any failed attempt and incorrect placement of
the peg. For example, one may check if the peg moves more
than its radius while moving towards the hole. Accordingly,
the robot algorithm may be designed to search the hole again.
Similarly, if the peg gets into the hole without touching



the tube surface, the peg may be released without starting
the search procedure. The system may also be programmed
to remember the hole location once it is located using the
proposed search technique to repeatedly insert the peg at the
same hole location. Again as a check, one may lower the
peg using a guarded move, i.e., by continuously checking
the contact force, and if the peg hits the tube surface the
search process may be redone.

V. CONCLUSIONS

This paper presents a depth-based approach to localize the
hole position of a tube for a peg-in-tube process. Peg-in-tube
was addressed as an illustration for wider set of assembly
processes which are encountered in any industrial assembly
task. The proposed algorithm can handle a wide range of
pegs and tubes combinations without modifying the code
or re-calibrating the robot’s end-effector tool, provided the
peg is held at a same height from its base. The hole position
with offset as high as the peg radius can be detected reliably.
The proposed method minimizes the effect of error due to
external force/moment data acquisition system and relies on
the existing forward kinematics that exists in any industrial
robot in order to find the depth and thereby the hole. While
the proposed method addresses only the positional errors, the
procedure makes use of an indigenous active/passive force
control algorithm, reported differently, to accommodate any
small misalignment encountered during the insertion phase.
With relatively high tolerance, the insertion becomes a self-
guided assembly.
This paper presented an in-depth geometrical analysis of the
peg-in-tube process. The cases of contact discussed in section
II-C may be used to generate an analytical depth map and
can be used for localization using method proposed by [3].
The challenges, however, remain the same for any depth-
based localization technique. These cases may also be used
for generating simulations of any cylindrical peg and tube
contacts or its assembly process. Finally, the proposed algo-
rithm for peg-in-tube assembly was tested on a KUKA KR5
Arc industrial robot and was found to be more reliable than
any other blind search algorithm under similar condition.
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