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Abstract— The recent demographic trend across developed
nations shows a dramatic increase in the aging population,
fallen fertility rates and a shortage of caregivers. Robotic
solutions to clothing assistance can significantly improve the
Activity of Daily Living (ADL) for the elderly and disabled.
We have developed a clothing assistance robot using dual arms
and conducted many successful demonstrations with healthy
people. It was, however, impossible to systematically evaluate
its performance because human arms are not visible due to
occlusion from a shirt and robot during dressing. To address
this problem, we propose to use another robot, Whole-Body
Robotic Simulator of the Elderly that can mimic the posture
and movement of the elderly persons during the dressing
task. The dressing task is accomplished by utilizing Dynamic
Movement Primitives (DMP) wherein the control points of DMP
are determined by applying forward kinematics on the robotic
simulator. The experimental results show the plausibility of our
approach.

I. INTRODUCTION

The world’s population is rapidly aging. The number of
people aged 60 years or older is expected to rise from 12%
to 22% of the total global population between 2015 and 2050
[1]. This dramatic increase in the aging population combined
with fallen fertility rates are reaching up to an alarming
situation. According to a survey focusing on difficulties in
performing various Activity of Daily Living (ADL), the
use of caregivers was seen as more common for clothing
assistance tasks [2]. As per the Japanese ministry’s estimate,
the nation will need 2.53 million caregivers in fiscal 2025,
but the available caregivers will fall short of this number by
377,000 [3].

Therefore, robotic solutions to clothing assistance can sig-
nificantly improve ADL for the elderly and disabled [4], [5],
[6]. Clothing assistance is a challenging problem since the
robot is required to manage two difficulties: (a) robot must
do cooperative manipulation by holding clothing article using
both the arms while interacting with nonrigid and highly
deformable clothing article and (b) maintain safe human-
robot interaction with the assisted person whose posture can
vary during assistance. To address these problems, we have
been developing clothing assistance robot systems using a
compliant dual-arm robot such as WAM arms (Barrett, Tech-
nology) [7] and Baxter (Rethink Robotics) [8], [9]. In both
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systems, the research key point was on human skill transfer
to robots. In our approach, feasible arm trajectories were
given by humans, and the arm trajectories were adaptively
modified by employing reinforcement learning [7] and by
Dynamic Movement Primitives (DMP) [10].
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Fig. 1: Setup of the task

We have conducted many successful demonstrations
mainly with healthy people [9]. It was, however, impossible
to systematically evaluate its performance with a human
subject because the posture of human arms can vary and
also are invisible in a cloth during dressing. To address this
problem in this paper, we propose to use another humanoid
robot, Whole-Body Robotic Simulator of the Elderly [11],
[12] that can simulate the pose and motion of the elderly
persons during the dressing task (see Fig. 1). This robotic
simulator is also referred as the robotic subject in this paper.
The trajectory of Baxter arms required for the dressing task
is parameterized by using DMP. To adapt to perturbations
generated by the subject’s arm, we need to modify control
points of DMP on the fly. In other words, we need to track
control points which are the fingertips and elbows of the
robotic subject. A potential solution to perform this tracking
is by employing optical markers. These markers can be
attached on desired points and can be tracked by optical
cameras. However, this approach has a severe drawback.
During the dressing task, due to the occlusion from clothing
article and robot arms, marker tracking fails miserably. In this
paper, we apply forward kinematics on the robotic subject to
determine the control points. Since the subject is a robotic
mannequin, we are blessed with its capabilities. We can
acquire all joints angles necessary for performing forward
kinematics.

The remainder of the paper is organized as follows. First,



we briefly introduce the robotic simulator in Section II.
Section III describes our method followed by the details of
the experimental setup in Section III-A and the mathematical
formulation of DMP in Section III-B. In Section IV, we
evaluate the proposed framework on the robotic subject. The
discussion along with the conclusion and future directions of
the research is presented in Section V.

II. A ROBOTIC SIMULATOR FOR ELDERLY

In robotic devices of non-wearable transfer aids and toilet-
ing aids, their underlying mechanism, movement, mechanis-
tic performance such as safety and usability were evaluated
using the robotic simulator. Following are the specifications
of this human simulator [11]:

• It can make arbitrary postures to fit various shapes of
the assistive robotic devices.

• It can move joints to simulate the behavior of a person.
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Fig. 2: The robotic subject. Fig. (a) shows all components of
the system, Fig. (b) shows the skeleton model of the robotic
subject that contains active and passive joints. However, only
active joints are shown. All the joints are revolute joints.

The parameters of the robotic simulator are shown in Table
I. The shape, weight, and length of each body segment was
determined to simulate the body of an elderly male in his
60s based on “Japanese Body Dimension Data” [13]. The
developed robotic simulator and the position of the degree
of freedom are shown in Fig. 2b. The robotic simulator has
28 passive and 22 active joints that are controlled based
on positional control. The actuator of an active joint is
an air actuator, controlled using an air compressor (about
8 atmospheres) and valve units (22 channels), that are set
outside the robotic simulator. To contact the complex surface
for nursing care, the robotic simulator is covered with a soft
material. The distribution pressure patterns of the robotic
simulator, human, and crash test dummy on a bed were
measured.

TABLE I: Parameters of the Robotic Simulator

Length 1650 mm
Weight 50 Kg

Number of active joints 22
Number of passive joints 28

III. METHOD

In this section, we are explaining our method used for
the evaluation of clothing assistance. The framework of
our method is shown in Fig. 3. Our method contains three
stages named as “Demonstration,” “Training” and “Testing.”
As per the formulation described in section III-B, DMP
can learn from the demonstration. Therefore we start by
performing a kinesthetic demonstration with the robot con-
trolled in gravity compensation mode, which is referred to
as “Demonstration Stage” since, in this stage, an expert
provides a demonstration of the dressing task while the robot
is under gravity compensation. During the demonstration,
the pose trajectory of end-effector is recorded using Baxter
API and stored in a file. The term “pose” collectively refers
to position in Cartesian space p = (px, py, pz) ∈ R3 and
orientation. The orientation is defined in terms of quaternion
q = (qx, qy, qz, qw) ∈ R4. Once the demonstration is
finished, the recorded trajectory is parameterized using DMP.
This is termed as “Training Stage.” The parameterized DMP
can represent all the characteristics of the original trajectory.
Here, three DMP systems, one for each coordinate axis, i.e.,
x, y, and z are initialized for one arm. In this way, we
have a totally six DMP systems, which can control both
the arms of the Baxter robot. The orientation of the end-
effector is not considered as a part of the DMP system
and kept the same as it was at the time of “Demonstration
Stage.” Now, we need to set the control points which are
start and goal parameters of DMP as fingertip and elbow
positions of the subject respectively shown in Fig. 4. The
control points of DMP are retrieved by applying rigid body
forward kinematics on the robotic subject. Joint angles of the
robotic subject are retrieved and then used to calculate the
position of control points in a Cartesian coordinate system.
These coordinates derived by applying forward kinematics
are referenced in the robotic subject frame. However, the
Baxter robot has a different frame of reference. Hence,
a coordinate calibration is done to transform the robotic
subject frame into the Baxter robot frame. We prepared
two experimental conditions/movement trajectories for the
robotic subject as shown in Fig. 5. During the “Testing
Stage,” these trajectories are applied to the robotic subject.
At every timestamp, the control points are calculated and
then set as the current start and goal parameters of DMP.
Therefore, tracking of control points and rolling of DMPs are
done at every timestamp. In this way, we have a DMP system,
which can adapt accordingly while the arms of the robotic
subject are in motion. To verify the adaptation, trajectories
of Baxter and the robotic subject are recorded which are then
analyzed in Sec. IV.
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Fig. 3: The framework for our method. It consists of three stages named as “Demonstration”, “Training” and “Testing.”

A. Experimental Setup

The experimental setup contains a compliant dual-arm
humanoid robot Baxter. Each arm of the Baxter robot has
7 degrees of freedom (DOF). The setup of our system is
shown in Fig. 1. We are using an in-house developed robotic
simulator to simulate the pose and motion of the elderly
person during the dressing task. The robotic system is treated
here as a subject for the evaluation of clothing assistance. We
have used two finger electric gripper provided by Baxter. We
designed soft fingertips that were plugged into these fingers
tightly. These soft fingertips allow firm gripping by providing
sufficient traction to hold the cloth. These soft fingertips are
necessary for firm gripping of flexible clothing articles hence
provides better cloth manipulation. These fingertips hold the
clothing article. The cloth is put in the arms of the Baxter
robot manually by a human assistant.

Goal Points
(Elbow)

Start Points
(Fingertips)

Fig. 4: Control points for arm dressing task showing start
and goal points of DMP system colored as orange.

B. Dynamic Movement Primitives

DMP aims at designing a controller for learning and gener-
alization of motor skills by learning from demonstration [10].
The controller is based on a nonlinear dynamical system and
uses Locally Weighted Regression (LWR) to learn complex,
discrete or rhythmic movements demonstrated by a human

subject [14]. The basic idea behind DMP formulation is to
use an analytically well-understood dynamical system and
add a nonlinear term so that it produces the desired behavior
[15]. Originally, for a one-dimensional system, DMP is
defined by a linear spring model combined with an external
force as follows.

τ v̇ = K(xg − x)−Dv + (xg − x0)f (1)

where τ ẋ = v. The term x and v are position and
velocity of the system respectively, x0 and xg are start
and goal position respectively, τ is the temporal scaling
term, K acts like spring constant and D is damping factor
chosen in a way such that system is critically damped.
The nonlinear function f , which is also called the forcing
term is a nonlinear function to be learned to allow complex
movements. However, the above formulation of DMP suffers
from stability issues such as high accelerations for special
cases. Hence, a new formulation was proposed by Pastor et
al. [14] in which Eqn. 1 was redefined as follows.

(a) The first type of
movement

(b) The second type of
movement

Fig. 5: Movements defined for the arms of the robotic
subject.

τ v̇ = K(xg − x)−Dv −K(xg − x0)s+Kf(s) (2)

Notice the term K(xg−x0)s which is necessary for avoiding
a sudden jump at the beginning of a movement. The forcing
term f is now defined as a function of variable s as shown
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Fig. 6: Baxter’s arms trajectories for both the arms which are parameterized by using DMP. The time is normalized to [0,
1] range. The figure shows the DMPs are well capable of learning the complex Baxter trajectories.

below.
f(s) =

Σiwiψi(s)

Σiψi(s)
s (3)

where ψi is defined as Gaussian basis function as

ψi = exp
(
−hi (s− ci)2

)
(4)

where hi and ci are constants that determine, respectively,
width and centers of basis functions. wi represents weight
defined for each Gaussian. The variable s is called the phase
variable which starts from 1 and monotonically decreases to
0. It is defined by the equation τ ṡ = −αs, where α is a
positive gain term.

Our goal is to design a forcing term that can learn from
demonstration and allows us to scale the movement defined
by start and goal state, i.e., x0 and xg respectively. So that
the system can follow a specified path. The forcing term can
be redefined as follows

ftarget(s) =
Dv + τ v̇

K
− (xg − x) + (xg − x0)s (5)

where desired acceleration v̇(t) can be calculated by taking
the second derivative of the positional data recorded from
the demonstration as

v̇(t) =
∂v

∂t
=
∂2x

∂t2
(6)

The forcing term in Eqn. 3 is comprised of the weighted
summation of Gaussians that are going to be activated as
a system converges to the goal. We want that forcing term
matches the desired trajectory, i.e., ftarget should be as close
as possible to f . Mathematically, we can formulate it as an
optimization problem such as J =

∑
s (ftarget(s)− f(s))

2.
Finally, to calculate weight parameters across Gaussians,
optimization methods such as Locally Weighted Regression
(LWR) [15] can be used. So that the forcing term matches the
desired trajectory. In this way, DMP can be made to imitate
the desired path [14].

IV. EVALUATION

We use Robot Operating System (ROS) to implement
our framework in Ubuntu OS. Baxter robot is connected
to the Ubuntu computer using an Ethernet cable. We used
Ubuntu 14.04 LTS 64 Bit OS having 8 GB RAM on Intel

Core i7, 3.40 GHz x 8 CPU for training and testing our
framework. The clothing articles used in this study is 100%
polyester (size L) sleeveless t-shirt. We have defined two
types of movements for the arms of the robotic subject as
shown in Fig. 5. These movements belong to day-to-day
arm stretching movements and are defined empirically. More
precisely, in these two movements, both the arms move in
a horizontal plane. In the first motion, only the shoulder
joint rotates. However, in the second motion, the elbow joint
rotates primarily. The control points of DMP are set based
on these movement trajectories.

The DMP system accomplished the arm dressing task.
We defined a DMP for each coordinate axis and each arm.
Hence we have a total of 6 DMPs, 3 for each arm. The
demonstrated trajectory is parameterized using these DMPs.
Fig. 6 shows the DMPs are well capable of learning the
complex Baxter trajectories. We can see that DMPs are
following the demonstrated trajectory.

Initial DMP is modified to accommodate new posture by
changing start and goal parameters acquired from the forward
kinematics of the robotic subject. The robot is commanded
at each timestamp while setting the control points on the fly.
During the movements of arms of the robotic subject, the
robot adapts as shown in Fig. 7a. This figure corresponds to
the first type of arm movement as shown in Fig. 5a. Baxter
robot starts from the fingertips of the robotic subject. The
time (t) is normalized to [0, 1] range for easier visualization.
At t = 0, the fingertips of the robotic subject are parallel
to the elbow of the robotic subject. As per the defined
movement, the fingertips of the robotic subject start moving
apart from each other. At t = 0.5, we can see that both the
arms of the Baxter robot are adopting this change and moving
away from each other. Baxter’s end-effector corresponds to
the left arm of the robotic subject is moving downwards
whereas Baxter’s end-effector corresponds to the right arm
of the robotic subject is moving upwards. This motion is
desired since Baxter needs to put the clothing article. Hence,
it needs to expand the cloth in this situation. At t = 1, Baxter
arms are approaching elbows of the robotic subject. The same
behavior can be observed in Fig. 7b. This figure corresponds
to the second type of arm movement as shown in Fig. 5b. At
t = 0.5, we can see that the fingertips of the robotic subject
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(a) Baxter’s trajectories for the first type of movement of the robotic subject
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Fig. 7: The trajectories of Baxter’s arms while performing arm dressing task. The orange colored points showing control
points of DMP, are moving as per the defined motion. The robot successfully adopts to the fast motions of the arms.
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(a) Baxter’s trajectories for the first type of movement of the robotic subject
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(b) Baxter’s trajectories for the second type of movement of the robotic subject

Fig. 8: The trajectories of Baxter’s arms for the motions of the robotic subject. Baxter is run ten times for each type of
movement. The time is normalized to [0, 1] range. For each trajectory, the mean position is plotted with the black color,
and the region µ± σ along the mean position is filled with the gray color.



are moving closer to each other. Hence Baxter immediately
starts moving closer to the arms of the robotic subject. We
can also see that even though the demonstrated trajectory is
quite simple but Baxter trajectory turned out to be a complex
one.

We ran the arm dressing task ten times for each type of
arm movements and visualized the robot trajectory during
the task. The visualization is shown in Fig. 8. The time is
normalized to [0, 1] range. For each trajectory, the mean
position is plotted with the black color, and the region µ±σ
along the mean position is filled with the gray color. Even
though, from the setup of our system, it appears that both the
arms of the robotic subject are in symmetry. However, after
looking at the y and z coordinate axis of Baxter’s trajectories,
it can be said that the arms are indeed not in symmetry. The
z coordinate is in the vertical direction and corresponds to
the height of arms of the subject. Moreover, the difference
in z coordinate validates the unsymmetrical position of the
arms.

V. CONCLUSIONS

In recent years, assistive robotic devices for nursing care
have been developed and commercialized for such purposes.
To make such devices accessible in the care facilities, we
need to systematically evaluate the performance and the
effects of the devices on the care receivers and caregivers.

We have developed a clothing assistance robot using Bax-
ter and conducted many successful demonstrations mainly
with healthy people. It was, however, impossible to sys-
tematically evaluate its performance with a human subject
because the posture of human arms is invisible due to the
cloth over them during dressing. To address this problem, we
have proposed to use another humanoid robot, Whole-Body
Robotic Simulator of the Elderly [11], [12] that can mimic
the posture and movements of the elderly persons during
the dressing task. In this study, we specifically evaluated our
clothing assistance framework employing DMP for the arm
dressing tasks with the robotic subject. The control points
of DMP are determined by applying forward kinematics
on the robotic simulator. We have performed a quantitative
evaluation of arm dressing task by using forward kinematics
for calculating the arm positions of the robotic simulator.
We have shown the plausibility of our approach through the
experiments where we defined two different arm movements,
which were supposed to be disturbances, of the robotic
subject during the arm dressing task.

Although, it appears from the setup of our task that both
arms of the subject are required to be in symmetry. However,
separate DMPs are employed to take care of each arm.
During the task, arms are constrained due to the t-shirt over
them. In this situation, the arms cannot be moved beyond
a limited range. Hence, both the arms are restricted to be
parallel even though separate DMPs are employed for both
arms.

Using three-dimensional arm movements, and head and
torso movements during the dressing tasks are our near
future work. We have tested our approach on healthy human

subjects [9], wherein Baxter was used to perform a full
dressing of a sleeveless shirt. However a much rigorous
evaluation on elderly is planned as a future work. We will
also consider safely issues in the future.
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[4] A. Jevtić, A. F. Valle, G. Alenyà, G. Chance, P. Caleb-Solly, S. Do-
gramadzi, and C. Torras, “Personalized robot assistant for support
in dressing,” IEEE Transactions on Cognitive and Developmental
Systems, 2018.

[5] Z. Erickson, M. Collier, A. Kapusta, and C. C. Kemp, “Tracking
human pose during robot-assisted dressing using single-axis capacitive
proximity sensing,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2245–2252, 2018.
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