
Electric Wheelchair–Humanoid Robot Collaboration
for Clothing Assistance of the Elderly

Ravi Prakash Joshi
Life Science and Systems Engineering

Kyushu Institute of Technology
Kitakyushu, Japan

joshi.ravi-prakash869@mail.kyutech.jp

Jayant Prasad Tarapure
Production and Industrial Engineering

Indian Institute of Technology Delhi
New Delhi, India

me2170670@iitd.ac.in

Tomohiro Shibata
Life Science and Systems Engineering

Kyushu Institute of Technology
Kitakyushu, Japan

tom@brain.kyutech.ac.jp

Abstract—In rapidly aging societies, robotic solutions for
clothing assistance can significantly improve the quality of life
of the elderly while coping with the shortage of caregivers.
Previously, we proposed a framework for the same by employing
imitation learning from a human demonstration to a compliant
dual-arm robot. As the robot has a limited workspace, this
framework involves a manual movement of the wheeled chair
by pushing it while coordinating with the robot to stay within
the workspace of the robot [1]. To avoid the manual push
and coordination, we facilitate the automatic movement of the
chair based on the trajectory of the robot’s dual arms. In
this paper, we present an approach for the collaboration of
an electric wheelchair and a humanoid robot to achieve the
clothing assistance task. Our approach incorporates Manifold
Relevance Determination (MRD) to learn an offline latent model
from the simultaneous observations of the clothing assistance
task as well as the movement of the wheelchair. We trained and
tested the latent model on different human subjects by dressing
a sleeveless T-shirt. Experimental results verify the plausibility
of our approach. To the best of our knowledge, this is the first
work addressing collaboration between wheelchair and robot to
perform clothing assistance.

I. INTRODUCTION

There has been a significant increase in the elderly popula-
tion in developed countries in recent times. In such countries,
the ratio of the elderly population to the overall population
is predicted to increase further in forthcoming years. The
population ratio for the elderly is the highest in Japan at 28.1
percent, followed by Italy at 23.3 percent, Portugal at 21.9
percent, and Germany at 21.7 percent [2]. This demographic
trend has created a high demand for caregivers in nursing
homes. There is thus a need for robotic assistance for elderly
care in nursing homes.

Dressing is an essential and difficult ADL for the elderly,
which is generally taken care of by caregivers. While coping
with the shortage of caregivers, robotic clothing assistance can
significantly improve the quality of life of the elderly. In our
previous study, we had proposed a framework for the same
by using imitation learning from a human demonstration to
a compliant dual-arm robot [1]. As the robot has a limited
workspace, this framework involves a manual movement of
the wheeled chair so as to stay within the workspace of the
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Fig. 1: Setup of the task.

robot. This manual movement requires pushing the chair while
coordinating with the robot, which is difficult to perform by
the elderly. Thus, we focus on automating the movement of
the chair to make the dressing task much more comfortable
for the subject.

In robotic clothing assistance, the robot operates in close
proximity to the person. Therefore, the robot needs to be
aware of the presence of the person to ensure his safety.
Not to mention that the posture of the person can vary
while performing the task. Therefore, Gao et al. [3] used
Gaussian mixture models to encode user-specific upper body
movements. Also, Erickson et al. [4] tackled the problem of
human pose tracking during the clothing assistance task by
using proximity sensing. Zhang et al. [5] performed tracking of
the user’s movements to perform robotic clothing assistance. In
these studies, authors have used a jacket or hospital gown as a
clothing article. They limited their experiments by considering
only one arm dressing.

In literature, Deep Neural Networks (DNN) is well known
for classification and regression problems. Clegg et al. [6]
used Deep Reinforcement Learning (DRL) for hospital gown



dressing by human-robot collaboration. They used a simulation
environment to learn control policies for human and robot
simultaneously. They employed a co-optimization approach to
train two dense DNN and optimized it to maximize expected
long-term rewards. DNN is very promising in classification
and regression problems demands a massive amount of data
to learn. Collecting a large dataset in robotics, especially in
robotic clothing assistance, is highly challenging and time-
consuming and hence discouraged by the research community
in robotics. On the other hand, in DRL based methods, the
agent needs to perform numerous interactions with a test
environment [7]. The test/simulation environment contains
limited knowledge about the environment. It can be extremely
unfeasible to model a simulation environment for a real
and complex environment. Manifold Relevance Determination
(MRD) [8] adopts Bayesian treatment to learn from a little
amount of data. It constructs a low dimensional latent space
by determining a common representation among underlying
high dimensional data.

The important feature of this study is human-robot and
robot-robot collaboration in service robotics. In this study, we
present an approach to collaborate between the wheelchair
and the humanoid robot to perform the clothing assistance
task. The setup of our system is shown in Fig. 1. A human
subject is sitting in an electric wheelchair and facing his hands
towards the robot. The robot’s arms have a limited workspace
and need to reach the torso of the subject to perform the
dressing task. Hence the chair must move forward to stay
within the workspace of the robot during the dressing task.
Therefore, it is empirical that the joint angles of the robot and
the movement of the chair share a common latent space. This
is why we employed MRD to learn the latent space offline
for the simultaneous observations from the clothing assistance
task as well as the movement of the wheelchair. To the best of
our knowledge, this is the first work addressing collaboration
between wheelchair and robot to perform clothing assistance.

The rest of the paper is organized as follows. In Section II,
we explain the proposed method, followed by an introduction
of MRD. Section III deals with the various experiments
performed. Results and discussion are provided in Section IV,
followed by limitations of this study in Section IV-A. Finally,
we conclude in Section V with future directions.

II. METHOD

Robotic clothing assistance supports the subject in getting
him dressed up. In this study, we are using a sleeveless T-
shirt as the clothing article. This task is performed using
a compliant dual-arm Baxter robot while coordinating with
WHILL, an electric wheelchair [9]. The cloth goes through
the arms, then goes over the head, and finally reaches up to
the torso of the subject. An overview of the proposed method
is shown in Fig. 2. We define two observation spaces, i.e.,
Baxter joint angle space, and WHILL movement space. We
perform a kinesthetic demonstration of the task while Baxter
is controlled under gravity compensation mode. During the
demonstration, an expert manipulates the arms of Baxter robot

while a subject is sitting in the wheelchair, as shown in Fig. 3.
At this stage, the wheelchair is controlled manually by using
a joystick. Baxter joint angle space consists of the joint space
trajectory of the robot, whereas the WHILL movement space
consists of the movement given to the wheelchair during the
demonstration. We apply MRD on both the observation spaces
to discover shared dimensions in a 2D latent space. This latent
space encodes the motor skills required to perform the clothing
assistance tasks as well as to depict the wheelchair movement.
During the inference, the mean trajectory is sampled from the
latent space. This mean trajectory of the latent space is used
to infer the joint space trajectory of the Baxter robot. We then
use the joint angles of Baxter to predict the movement of the
wheelchair in real-time using the learned MRD model.

In the following subsection, we present a brief mathematical
formulation of MRD.

A. Manifold Relevance Determination (MRD)

MRD is a nonlinear dimensionality reduction technique
proposed by Damianou et al. [8]. It is used to learn a shared
latent space among multiple observation spaces. It involves
the use of Bayesian inference as it was proposed as an
extension to the Bayesian Gaussian Process Latent Variable
Model (BGPLVM) proposed by Titsias et al. [10].

MRD aims to relate two observation spaces Y ∈ RN×DY

and Z ∈ RN×DZ within a single model. Here, N represents
the number of observations. DY and DZ represent the dimen-
sionality of each observation, i.e., Y and Z respectively. The
two observations spaces are assumed to be generated from a
low-dimensional latent space X ∈ RN×L such that L � D
(to account for the dimensionality reduction) and corrupted by
Gaussian noise:

yn = fY (xn) + εYn , ε
Y
n ∈ N (0, β−1

Y I),

zn = fZ(xn) + εZn , ε
Z
n ∈ N (0, β−1

Z I)
(1)

where βY , βZ denote the inverse variance parameters for the
noise random variables εYn , εZn . A Gaussian Process (GP) prior
is placed on the mapping function f , f(x) ∼ GP(0, k(x,x′)),
where k(x,x′) is the covariance function, which is defined by
the automatic relevance determination (ARD) kernel.

The likelihood under the model is denoted by, P(Y,Z|X,θ)
where θ = {θY ,θZ} collectively denotes the parameters of
the mapping functions and the noise variances βY , βZ .

The selection of the latent space dimensionality is per-
formed automatically using the ARD kernel,

kY (xi,xj) = σ2
Y exp

(
−1

2

L∑
l=1

αY
l (xi,l − xj,l)2

)
(2)

and similarly for the Z observation space. The relevance of
each latent dimension is determined by its ARD weight αl,
and the scale of the GP mapping function is determined by σ.

The ARD weights αY
l , αZ

l also help in partitioning the latent
space into shared (XS) and private spaces (XY ,XZ). This
is done by using a threshold δ which is set heuristically on
the normalized ARD weights to determine the relevance of
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Fig. 2: An overview of the proposed method for the collaboration between Baxter and WHILL. We defined two observation
spaces, i.e., Baxter joint angle space (only 1 of the 14 joint angles of the robot is indicated in the graphs here) and WHILL
movement space, and learned a shared latent space by employing MRD.

Subject

Demonstrator

Fig. 3: Demonstration of the task

a latent dimension in reconstructing each observation space.
The shared and private spaces are defined as follows:

XS = {xl}Ll=1 : xl ∈ X, αY > δ, αZ > δ

XY = {xl}Ll=1 : xl ∈ X, αY > δ, αZ < δ

XZ = {xl}Ll=1 : xl ∈ X, αY < δ, αZ > δ

(3)

Now, we briefly explain the inference process in MRD.
Given a set of observed test points Y? ∈ RN?×DY , we aim
to generate a new set of outputs Z? ∈ RN?×DZ . This is done
in the following three steps:

1) We predict the set of latent points X?
Y , X?

S which is
most likely to have generated Y?.

2) The shared latent space X?
S is then used to find the

nearest neighbors among the latent points corresponding
to the training data and obtain the information on the
private dimension of Z, XNN

Z .
3) We use the full latent state X?

S , XNN
Z to infer the outputs

Z?.
Detailed explanation of MRD is given in [8].

III. EXPERIMENTS

A. Experimental Setup

The experimental setup contains a compliant dual-arm hu-
manoid Baxter robot and an electric wheelchair WHILL [9].
The Baxter robot has 7 degrees of freedom (DOF) in each
arm, adding up to a total of 14 joint angles required to define
a specific configuration of the robot. The Baxter robot is
controlled using the Robot Operating System (ROS) in Ubuntu
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Fig. 4: Preprocessing of the collected data. We use the median
filter and cubic interpolation to preprocess the collected data.
We are showing only one joint angle of the Baxter robot. The
WHILL movement refers to the forward tilt of the joystick.

PC. It is connected to the PC using an Ethernet cable. We
command the robot using the Baxter API, which is supported
by ROS.

The WHILL wheelchair is also controlled using ROS,
and our in-house developed API is used to command the
movement [11]. The movement of the wheelchair refers to the
tilt of the joystick and comprises of two parameters, forward
tilt and sidewise tilt. The forward and sidewise tilt causes the
forward and turn movement, respectively. The default joystick
value is a tuple of forward and sidewise tilt, and it is (0, 0).
The range of forward and sidewise tilt is [-100, +100]. Note
that if the forward tilt is negative, i.e., the joystick is tilted
backward, the wheelchair moves in the backward direction.
In this study, we focus only on the forward movement of the
wheelchair and keep the sidewise tilt to 0 always.

The wheelchair is kept approximately a meter away from
the robot. To dress the sleeveless T-shirt, the subject needs to
keep his hands stretched outwards and facing the robot. We
used a sleeveless polyester T-shirt during the experiment. We
used Ubuntu 14.04 LTS 64-bit Operating System having 8GB
RAM on Intel Core i7, 3.40 GHz x 8 CPU for training and
testing our method.1

B. Shared Latent Manifold Learning for Automated
Wheelchair Movement

For training the MRD model, we collected data of joint
angles of the Baxter robot and the corresponding wheelchair
movement by performing a kinesthetic demonstration of the
task on a subject. The collected data comprises the joint space
trajectory of the Baxter robot and corresponding wheelchair

1The source code used in experiments is available at https://github.com/
ravijo/HSI2020
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movement throughout the clothing task. The data were pre-
processed before being used for training the MRD model,
as shown in Fig. 4. We used the median filter and cubic
interpolation to preprocess the collected data. The WHILL
movement refers to the forward tilt of the joystick as we have
not considered sidewise tilt by keeping it 0 always.

We aim to learn a single latent space for the two observation
spaces, i.e., joint angles of the Baxter robot

(
Y ∈ RN×14

)
and

forward movement of the wheelchair
(
Z ∈ RN×1

)
. Therefore,

we train a MRD model using these two observation spaces.
The MRD model was implemented using the GPy python
library [12]. The latent variable X was initialized using
Principal Component Analysis (PCA) from the preprocessed
data. We have used 8 latent dimensions in this experiment,
with 6 latent dimensions allocated for the joint angles of the
Baxter robot and 2 latent dimensions for the movement of the
wheelchair. ARD kernel and 100 inducing points were used to
learn the MRD model. The model was trained in the following
3 steps:

1) For both observation spaces, the signal-to-noise ratio
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Fig. 7: Comparison of the predictions for WHILL movement

(SNR) was fixed to constrain the variance of Gaussian
noise and Radial Basis Function (RBF) kernel. In this
configuration, the model was optimized for ten itera-
tions.

2) Each observation space, i.e., Y and Z, was optimized
individually for 200 iterations.

3) The model was trained without any constraints and
optimized for 200 iterations.

IV. RESULTS AND DISCUSSION

After training the MRD model, the ARD weights for each
latent dimension are computed. We observed that there were
two shared latent dimensions between the two observation
spaces, namely latent dimensions 0 and 1. The ARD weights
for each latent dimension are shown in Fig. 5. The latent
dimensions 0 and 1 are following our intuition that the joint
angles of the Baxter robot and the movement of the wheelchair
share common latent dimensions. These two latent dimensions
constitute the shared latent space (XS). The 2D latent space

TABLE I: Body physique information of the subjects

Subject for Training Subject for Testing
Height (cm) 166 173

Age 30 29
Shoulder Width (cm) 45 46

Waist Size (cm) 92 86

generated using the first two latent dimensions is shown in
Fig. 6.

The latent space shown in Fig. 6 is used to infer the joint
angles of Baxter. The corresponding WHILL movement is
predicted in real-time from the joint angles of the Baxter robot
using the learned MRD model through the inference process
explained in Section II. Alternatively, we can predict both
the observation spaces directly from the latent space itself.
However, we observe that the latent dimension 6 encodes
the second-highest amount of information about the WHILL
movement as can be observed from the ARD weights shown
in Fig. 5. This latent dimension constitutes the private latent
space of the WHILL movement, XZ . Hence, the prediction
of both the observation spaces from the latent space shown in
Fig. 6 would lead to a poor prediction of the WHILL move-
ment as this latent space is generated from latent dimensions 0
and 1 and does not consider the information of the movement
of the wheelchair encoded by latent dimension 6. Therefore,
we predict the WHILL movement from the joint angles of
Baxter using MRD inference.

To calculate the prediction accuracy of WHILL move-
ments, we computed the Mean Absolute Error (MAE) by
comparing the predicted movements with the ground truth.
The ground truth is obtained by preprocessing the collected
WHILL movement data. MAEs are computed for WHILL
movement prediction from joint space and latent space. The
predicted WHILL movements are shown in Fig. 7a and the
corresponding MAEs are shown in Fig. 7b.

The predictions from joint space are close to the ground
truth, which can be verified by observing the corresponding
MAE. We used the learned MRD model to perform the
complete dressing of a sleeveless T-shirt. The robot starts
moving from the home position. During the clothing assistance
task, the Baxter robot collaborates with WHILL to successfully
achieve the task. The dressing task at various timestamps is
shown in Fig. 8. The complete task took 40 seconds to dress
a sleeveless T-shirt. The body physique information of the
subjects is given in Table I.2

A. Limitations

At present, there are limitations of our work, as listed below.
• We have only considered the forward movement of the

wheelchair and ignored the sidewise rotation.
• In this study, wheelchair movement is defined by the tilt

of the joystick, which is analogous to velocity control

2A short video of this study can be watched at https://youtu.be/yWj-
UO8yGQE
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Fig. 8: The clothing assistance task with Baxter and WHILL shown at various timestamps. The mean trajectory in latent space
is sampled and shown in Green color in the latent space.

of the wheelchair. Thus, the current system needs proper
synchronization with the wheelchair to prevent overshoot-
ing the boundaries and causing a collision with the robot
base. Due to this limitation, we have used a fixed starting
position for the wheelchair.

• We assume that there are no obstacles in front of the
wheelchair, as the current system does not have any
obstacle avoidance mechanism.

• As this is a preliminary study, the current system is
trained and tested only on healthy young subjects. An
evaluation using elderly subjects is yet to be done.

• We have used a sleeveless T-shirt and shown successful
dressing of it using the proposed method. Dressing using
other types of clothes, such as pajamas and a hospital
gown, is yet to be done.

• The MRD model is trained using one demonstration tra-
jectory only. Empirically, it makes the proposed method
data-efficient. However, in practice, the generalization
capability of the model is limited. To tackle this issue,
we can use multiple demonstrations to train the model in
the future.

V. CONCLUSIONS

Robotic clothing assistance has the immense potential to
improve the quality of life of the elderly while reducing
the burden on caregivers considerably. It can cope with
the shortage of caregivers in the care-house. In this paper,
we have presented an approach for the collaboration of an

electric wheelchair and a humanoid robot to achieve the
clothing assistance task. We have shown that the coordinated
movement of the wheelchair and the humanoid robot is viable
by employing MRD. Furthermore, we learned an offline shared
latent space which predicts the required movement for the
wheelchair based on the current joint angles of the Baxter
robot. We trained and tested our approach on different human
subjects. We believe that the study reported in this paper
should contribute to the advancement in the field of human-
robot and robot-robot collaboration for service robotics.

In the future, instead of commanding movement as defined
by the tilt of the joystick, it is more practical to command
absolute positions to the wheelchair to ensure robust and safe
control. Therefore, we plan to implement a position controller
for the wheelchair in the future. We also plan to improve
wheelchair control by applying SLAM based navigation into it.
It will provide a safer control of the wheelchair by preventing
collisions with other objects. In the future, we aim to make
the whole system more robust and automatic by incorporating
visual RGB-D observation in our model. We will perform
detailed experiments with the elderly to evaluate the safety
and acceptance of the system.
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